SPRING, Texas—-ExxonMobil, working with the National Center for Supercomputing Applications (NCSA), has achieved a major breakthrough with proprietary software using more than four times the previous number of processors used on complex oil and gas reservoir simulation models to improve exploration and production results.
The breakthrough in parallel simulation used 716,800 processors, the equivalent of harnessing the power of 22,400 computers with 32 processors per computer. ExxonMobil geoscientists and engineers can now make better investment decisions by more efficiently predicting reservoir performance under geological uncertainty to assess a higher volume of alternative development plans in less time.
The record run resulted in data output thousands of times faster than typical oil and gas industry reservoir simulation. It was the largest number of processor counts reported by the oil and gas industry, and one of the largest simulations reported by industry in engineering disciplines such as aerospace and manufacturing.
“This breakthrough has unlocked new potential for ExxonMobil’s geoscientists and engineers to make more informed and timely decisions on the development and management of oil and gas reservoirs,” said Tom Schuessler, president of ExxonMobil Upstream Research Company. “As our industry looks for cost-effective and environmentally responsible ways to find and develop oil and gas fields, we rely on this type of technology to model the complex processes that govern the flow of oil, water and gas in various reservoirs.”
The major breakthrough in parallel simulation results in dramatic reductions in the amount of time previously taken to study oil and gas reservoirs. Reservoir simulation studies are used to guide decisions such as well placement, the design of facilities and development of operational strategies to minimize financial and environmental risk. To model complex processes accurately for the flow of oil, water, and natural gas in the reservoir, simulation software must solve a number of complex equations. Current reservoir management practices in the oil and gas industry are often hampered by the slow speed of reservoir simulation.
ExxonMobil’s scientists worked closely with the NCSA to benchmark a series of multi-million to billion cell models on NCSA’s Blue Waters Super Computer. This new reservoir simulation capability efficiently uses hundreds of thousands of processors simultaneously and will have dramatic impact on reservoir management workflows.
“NCSA’s Blue Waters sustained petascale system, which has benefited the open science community so tremendously, is also helping industry break through barriers in massively parallel computing,” said Bill Gropp, NCSA’s acting director. “NCSA is thrilled to have worked closely with ExxonMobil to achieve the kind of sustained performance that is so critical in advancing science and engineering.”
ExxonMobil’s collaboration with the NCSA required careful planning and optimization of all aspects of the reservoir simulator from input/output to improving communications across hundreds of thousands of processors. These efforts have delivered strong scalability on several processor counts ranging from more than 1,000 to nearly 717,000, the latter being the full capacity of NCSA’s Cray XE6 system.